
Lecture 9: Exporting Data from R
Dr. Logan Kelly

2024-09-04

Overview

• In this lecture, we’ll cover:

– How to export data from R into various file formats such as CSV and Excel.
– Practical examples of saving datasets for further analysis or reporting.
– Why exporting data is essential for business reporting and collaboration.

1. Introduction to Exporting Data

Once you’ve cleaned and analyzed your data in R, it’s important to know how to export
your results for further use. Exporting allows you to: - Share data with team members
or stakeholders. - Use the data in other software, such as Excel or databases. - Store the
processed data for future analysis.

R provides several functions for exporting data into common formats like CSV and Excel.

2. Exporting Data to a CSV File

The CSV (Comma-Separated Values) format is one of the most widely used file formats
for sharing data. It’s simple, lightweight, and compatible with most software tools like Excel,
Google Sheets, and databases.

Example: Exporting a Data Frame to a CSV File

You can use the write.csv() function to export data to a CSV file.

Exporting the sales_data data frame to a CSV file
write.csv(sales_data, "path/to/your/exported_data.csv", row.names = FALSE)

1

• Explanation:

– sales_data: The data frame you want to export.
– "path/to/your/exported_data.csv": The path and filename where the CSV file

will be saved.
– row.names = FALSE: This option prevents R from writing row names (indices) into

the CSV file, which is typically unnecessary.

Practical Application: Saving Cleaned Data

After cleaning and transforming your data, you can export it to share with others or to store
a copy of the final version.

Saving the cleaned and processed sales data
write.csv(sales_data, "cleaned_sales_data.csv", row.names = FALSE)

This exports your cleaned data to a CSV file named cleaned_sales_data.csv.

3. Exporting Data to Excel

While CSV files are great for simple data, sometimes you need to preserve formatting or
work with multiple worksheets. The Excel (.xlsx) format allows for more complex data
organization. To export data to Excel, you can use the writexl package.

Example: Exporting a Data Frame to an Excel File

First, you need to install and load the writexl package:

Installing and loading the writexl package
install.packages("writexl")
library(writexl)

Exporting the sales_data data frame to an Excel file
write_xlsx(sales_data, "path/to/your/exported_data.xlsx")

• Explanation:

– write_xlsx(): This function writes the data to an Excel file.
– "path/to/your/exported_data.xlsx": The path and filename for the Excel file.

2

Example: Exporting Multiple Sheets in One Excel File

If you need to export multiple data frames into different sheets of the same Excel file, you can
pass a named list of data frames.

Exporting multiple data frames to an Excel file with different sheets
write_xlsx(list(Sales = sales_data, Summary = sales_summary), "path/to/your/multi_sheet_data.xlsx")

• Explanation: This exports two data frames (sales_data and sales_summary) into
separate sheets named “Sales” and “Summary” in the same Excel file.

4. Additional Export Options

R supports exporting data to many other formats, including: - Text files: Using
write.table(). - RDS files: Using saveRDS() and readRDS() to save and load R-specific
data objects.

Example: Saving an R Object as RDS

The RDS format is ideal for saving R-specific data objects, including lists or model outputs,
that may need to be reloaded in a future R session.

Saving an R object (sales_data) as an RDS file
saveRDS(sales_data, "path/to/your/sales_data.rds")

Loading the saved RDS file back into R
loaded_sales_data <- readRDS("path/to/your/sales_data.rds")

• Explanation: This code saves sales_data as an RDS file and later loads it back into
R using readRDS().

5. Practical Applications of Exporting Data

In business analytics, exporting data is essential for: - Reporting: Sharing insights and
analysis with non-technical team members through CSV or Excel files. - Collaboration:
Allowing others to access and analyze the processed data. - Archiving: Saving cleaned or
transformed datasets for future use or compliance purposes.

3

Example: Exporting a Final Report for Stakeholders

Exporting the sales summary to a CSV file for stakeholder reporting
write.csv(sales_summary, "sales_summary_report.csv", row.names = FALSE)

This exports the summarized sales data, making it easy to share with stakeholders or include
in a business report.

Key Takeaways

• You can export data from R to various formats, including CSV and Excel, using
write.csv() and write_xlsx().

• The CSV format is simple and widely supported, while the Excel format allows for
more complex data organization, including multiple sheets.

• Exporting data is crucial for reporting, collaboration, and archiving in business
analytics.

Looking Forward

• In the next lecture, we’ll explore working with larger datasets in R and optimizing
your data analysis process using tools like data.table and parallel processing.

4

	Overview
	1. Introduction to Exporting Data
	2. Exporting Data to a CSV File
	Example: Exporting a Data Frame to a CSV File
	Practical Application: Saving Cleaned Data

	3. Exporting Data to Excel
	Example: Exporting a Data Frame to an Excel File
	Example: Exporting Multiple Sheets in One Excel File

	4. Additional Export Options
	Example: Saving an R Object as RDS

	5. Practical Applications of Exporting Data
	Example: Exporting a Final Report for Stakeholders

	Key Takeaways
	Looking Forward

