Lecture 8: Importing, Cleaning, and
Transforming Data in R

Dr. Logan Kelly
2024-09-04

Overview

e In this lecture, we’ll cover:

— How to import datasets into R from various file formats.

— Essential steps for cleaning business datasets, including handling missing data and
correcting data types.

— Practical examples of transforming data for analysis.

1. Importing Data into R

R provides multiple functions to import data from common file formats such as CSV, Excel,
and databases. Here, we focus on importing CSV and Excel files, which are widely used in
business analytics.

Importing Data from a CSV File

You can import data from a CSV file using the read.csv() function.

Example: Importing Sales Data from a CSV

Importing sales data from a CSV file
sales_data <- read.csv("path/to/your/data.csv", sep = ",")
head(sales_data) # View the first few rows of the data

¢ Explanation: The read.csv() function reads the CSV file and converts it into a data
frame in R. The head() function displays the first few rows of the dataset, making it
easy to quickly inspect the data.

Importing Data from an Excel File

To import Excel files, you can use the readxl package and the read_excel() function.

Example: Importing Data from an Excel File

Loading the readxl package
library(readxl)

Importing data from an Excel file
sales_data_excel <- read_excel("path/to/your/data.xlsx", sheet = 1)
head(sales_data_excel)

Working example
Loading the readxl package
library(readxl)

Importing data from an Excel file

sales_data_excel <- read_excel("../data/healthcare_sales.xlsx", sheet = 1)
head(sales_data_excel)

A tibble: 6 x 4

Product Sales_Q1 Sales_Q2 Sales_Q3

<chr> <dbl> <dbl> <dbl>
1 Surgical Masks 150 200 220
2 Hand Sanitizers 120 NA 190
3 N95 Respirators 180 230 250
4 Gloves 100 150 160
5 Ventilators 90 140 150
6 Face Shields 130 180 NA

o« Explanation: The read_excel () function imports data from the specified sheet of an
Excel file, converting it into a data frame.

2. Cleaning Data in R

Once data is imported, it often requires cleaning to ensure accuracy and consistency. This
includes: - Handling missing values. - Removing duplicates. - Correcting data types.

Handling Missing Values

Missing data can distort analysis, so it’s important to identify and address missing values.
The is.na() function checks for missing values.

Example: Handling Missing Values in a Data Frame

Checking for missing values in the sales data
sum(is.na(sales_data_excel))

(1] 4

Replacing missing values in the Sales column with the mean

sales_data_excel$Sales_Q2 <- ifelse(is.na(sales_data_excel$Sales_Q2),
mean(sales_data_excel$Sales_Q2, na.rm = TRUE),
sales_data_excel$Sales Q2)

Replacing missing values in the Sales_{Q3 column with the mean of Sales_Q2
sales_data_excel$Sales_Q3[is.na(sales_data_excel$Sales_Q3)] <-

mean(sales_data_excel$Sales_Q3, na.rm = TRUE)

head(sales_data_excel)

A tibble: 6 x 4

Product Sales_Q1 Sales_Q2 Sales_Q3

<chr> <dbl> <dbl> <dbl>
1 Surgical Masks 150 200 220
2 Hand Sanitizers 120 179. 190
3 N95 Respirators 180 230 250
4 Gloves 100 150 160
5 Ventilators 90 140 150
6 Face Shields 130 180 199.

o« Explanation: This code checks for missing values in the Sales column and replaces
any missing values with the column’s mean value.

Removing Duplicates

Duplicate rows can inflate your results, and it’s important to remove them. You can use the
duplicated() function to identify and remove duplicate rows.

Example: Removing Duplicates from a Data Frame

Removing duplicate rows from the data frame
sales_data_excel <- sales_data_excel[!duplicated(sales_data_excel),]

o Explanation: This code removes any duplicate rows from the sales_data data frame.

Correcting Data Types

It’s crucial to ensure that each column in the dataset has the correct data type (e.g., numeric,
character, factor). You can use the str() function to check the data types.

Example: Changing Data Types in a Data Frame

Changing the Product column to a factor
sales_data_excel$Product <- as.factor(sales_data_excel$Product)

Converting Sales column to numeric (if needed)
sales_data_excel$Sales Q1 <- as.numeric(sales data_excel$Sales Q1)

Viewing the structure of the data
str(sales_data_excel)

tibble [16 x 4] (S3: tbl_df/tbl/data.frame)

$ Product : Factor w/ 16 levels "Disinfectant Wipes",..: 11 4 7 3 162 18 13 6 ...

$ Sales_Q1: num [1:16] 150 120 180 100 90 130 110 NA 130 140 ...
$ Sales_Q2: num [1:16] 200 179 230 150 140 ...
$ Sales_Q3: num [1:16] 220 190 250 160 150 ...

o Explanation: This code converts the Product column to a factor (for categorical anal-
ysis) and ensures the Sales column is numeric.

3. Transforming Data in R

Data transformation is often necessary to prepare data for analysis. This includes reshaping,
creating new variables, and aggregating data.

Creating New Variables

You can create new variables (columns) in a data frame by performing operations on existing
columns.

Example: Calculating Total Sales Across Quarters

Creating a new variable for total sales across all quarters
sales_data_excel$Total_Sales <-

sales_data_excel$Sales_Q1 + sales_data_excel$Sales_Q2 + sales_data_excel$Sales_Q3
head(sales_data_excel)

A tibble: 6 x 5

Product Sales_Q1 Sales_Q2 Sales_Q3 Total_Sales

<fct> <dbl> <dbl> <dbl> <dbl>
1 Surgical Masks 150 200 220 570
2 Hand Sanitizers 120 179. 190 489.
3 N95 Respirators 180 230 250 660
4 Gloves 100 150 160 410
5 Ventilators 90 140 150 380
6 Face Shields 130 180 199. 509.

o Explanation: This code creates a new Total_Sales column that sums up sales from
the first three quarters for each product.

Aggregating Data

Aggregating data helps summarize datasets and identify trends or patterns. The group_by ()
and summarise() functions from the dplyr package are useful for this.

Example: Aggregating Data by Product

Loading the dplyr package

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Aggregating sales data by product
sales_summary <- sales_data_excel />
group_by (Product) %>/
summarise(Total_Sales = sum(Total_Sales))
sales_summary

A tibble: 16 x 2

Product Total_Sales

<fct> <dbl>
1 Disinfectant Wipes 440
2 Face Shields 509.
3 Gloves 410
4 Hand Sanitizers 489.
5 Hospital Beds 569.
6 IV Drip Sets 550
7 N95 Respirators 660
8 Oxygen Tanks NA
9 Patient Monitors 640
10 Pulse Oximeters 410
11 Surgical Masks 570
12 Syringes 520
13 Thermometers 490
14 Ultrasound Machines 550
15 Ventilators 380
16 Wheelchairs 390

o Explanation: This code groups the data by Product and calculates the total sales for
each product.

Reshaping Data

Reshaping data involves changing its structure, such as converting data from wide to long
format using the pivot_longer () function from the tidyr package.

Example: Reshaping Data from Wide to Long Format

Loading the tidyr package
library(tidyr)

Reshaping sales data from wide to long format

sales_long <- pivot_longer(sales_data_excel,
cols = c(Sales_Q1, Sales_Q2, Sales_Q3),

names_to = "Quarter",
values_to = "Sales")
head(sales_long)
A tibble: 6 x 4
Product Total_Sales Quarter Sales
<fct> <dbl> <chr> <dbl>
1 Surgical Masks 570 Sales_Q1 150
2 Surgical Masks 570 Sales_Q2 200
3 Surgical Masks 570 Sales_Q3 220
4 Hand Sanitizers 489. Sales_Q1 120
5 Hand Sanitizers 489. Sales_Q2 179.
6 Hand Sanitizers 489. Sales_Q3 190

o Explanation: This code reshapes the sales data from wide format (with separate
columns for each quarter) to long format, where each row represents a product-quarter
pair.

Key Takeaways

e You can import data from CSV and Excel files into R using read.csv() and
read_excel().

¢ Cleaning data involves handling missing values, removing duplicates, and correcting
data types.

¢ Data transformation includes creating new variables, aggregating data, and reshaping
datasets for better analysis.

Looking Forward

e In the next lecture, we’ll explore how to export data from R to various file formats,
allowing you to share your analysis and results.

	Overview
	1. Importing Data into R
	Importing Data from a CSV File
	Importing Data from an Excel File

	2. Cleaning Data in R
	Handling Missing Values
	Removing Duplicates
	Correcting Data Types

	3. Transforming Data in R
	Creating New Variables
	Aggregating Data
	Reshaping Data

	Key Takeaways
	Looking Forward

