
Lecture 4: Introduction to Data Structures in
R

Dr. Logan Kelly

2024-09-04

Overview

• In this lecture, we’ll cover:

– An overview of data structures in R.
– How to create and manipulate vectors in R.
– Practical examples of accessing data within vectors.
– Introduction to other data structures: matrices, data frames, lists, and factors.

1. Overview of Data Structures in R

R provides several data structures that are used to store, manage, and manipulate data
efficiently. Each structure has its specific use case and characteristics:

• Vectors: One-dimensional arrays containing elements of the same type.
• Matrices: Two-dimensional arrays where each element is of the same type.
• Data Frames: Two-dimensional structures where each column can have different types

of data (similar to a spreadsheet).
• Lists: Collections of elements that can hold different types of objects.
• Factors: Specialized vectors for storing categorical data.

Choosing the appropriate data structure is crucial for effective analysis, as each structure is
suited for different types of operations and datasets.

1

2. Vectors in R

What is a Vector?

• A vector is the simplest and most common data structure in R. It is a one-dimensional
array that holds data of a single type, such as numeric, character, or logical.

Creating a Vector

You can create a vector using the c() function, which stands for “combine” or “concatenate.”
This function allows you to combine multiple elements into a single vector.

Example: Creating a Numeric Vector

Creating a numeric vector
sales_vector <- c(120, 150, 90, 100, 130, 170, 200)
sales_vector

[1] 120 150 90 100 130 170 200

• Explanation: This code creates a numeric vector containing sales data. The c() func-
tion combines the sales figures into a single vector called sales_vector.

Example: Creating a Character Vector

Creating a character vector
product_vector <- c("Product A", "Product B", "Product C", "Product D")
product_vector

[1] "Product A" "Product B" "Product C" "Product D"

• Explanation: This example creates a vector of product names using the c() function
to combine the names into a single character vector.

Accessing Elements in a Vector

You can access individual elements in a vector using indexing. R indexing starts at 1, meaning
the first element of the vector is accessed with vector_name[1].

2

Example: Accessing the First Element of a Vector

Accessing the first element of the sales vector
sales_vector[1] # Returns 120

[1] 120

• Explanation: This code retrieves the first element of the sales_vector, which is the
value 120.

Example: Accessing Multiple Elements

You can access multiple elements of a vector using a range of indices.

Accessing the first three elements of the sales vector
sales_vector[1:3] # Returns 120, 150, and 90

[1] 120 150 90

• Explanation: The range 1:3 retrieves the first three elements of the sales_vector,
returning the sales figures 120, 150, and 90.

Modifying Elements in a Vector

You can modify specific elements of a vector by assigning new values to a specific index.

Example: Modifying the Second Element of a Vector

Modifying the second element of the sales vector
sales_vector[2] <- 160
sales_vector

[1] 120 160 90 100 130 170 200

• Explanation: This example updates the second element of the sales_vector from 150
to 160.

3

3. Introduction to Other Data Structures in R

Matrices

• A matrix is a two-dimensional array where each element is of the same type. Matrices
are useful for mathematical operations across rows and columns.

• Example: Creating a matrix of sales data for different products across different quarters.

Creating a numeric matrix
sales_matrix <- matrix(c(120, 150, 90, 100, 130, 170, 200, 210, 180),

nrow = 3,
ncol = 3,
byrow = TRUE)

sales_matrix

[,1] [,2] [,3]
[1,] 120 150 90
[2,] 100 130 170
[3,] 200 210 180

• Explanation: This matrix contains sales data for three products across three quarters.
Each row represents a different product, and each column represents a quarter.

Data Frames

• Data frames are two-dimensional structures that allow you to store data of different
types (e.g., numeric and character) in columns. This is one of the most common data
structures in R for business datasets.

Creating a data frame
sales_data <- data.frame(

Product = c("A", "B", "C"),
Sales_Q1 = c(120, 150, 90),
Sales_Q2 = c(170, 200, 140)

)
sales_data

Product Sales_Q1 Sales_Q2
1 A 120 170
2 B 150 200
3 C 90 140

4

• Explanation: This data frame contains sales data for three products (A, B, and C) across
two quarters (Q1 and Q2).

Lists

• A list can contain elements of different types, including vectors, matrices, and even other
lists. Lists are highly flexible and can be used to store complex data structures.

Creating a list
sales_list <- list(

Products = c("A", "B", "C"),
Sales = sales_vector,
Sales_Matrix = sales_matrix

)
sales_list

$Products
[1] "A" "B" "C"

$Sales
[1] 120 160 90 100 130 170 200

$Sales_Matrix
[,1] [,2] [,3]

[1,] 120 150 90
[2,] 100 130 170
[3,] 200 210 180

• Explanation: This list contains three elements: a vector of product names, a vector of
sales, and a matrix of sales data.

Factors

• Factors are used for storing categorical data, such as product categories or customer
satisfaction levels. They ensure proper handling of categorical variables in statistical
models.

Creating a factor
satisfaction <- factor(c("High", "Medium", "Low", "Medium", "High"))
satisfaction

5

[1] High Medium Low Medium High
Levels: High Low Medium

• Explanation: This factor represents customer satisfaction levels, with three categories:
“High”, “Medium”, and “Low”.

Key Takeaways

• Vectors are the simplest data structures in R, storing data of a single type. You can
easily access and modify elements using indexing.

• Matrices, data frames, lists, and factors allow you to work with more complex data
structures.

• You now know how to create and work with basic data structures in R.

Looking Forward

• In the next lecture, we’ll dive deeper into working with matrices in R, including creating,
accessing, and manipulating matrices for business analysis.

6

	Overview
	1. Overview of Data Structures in R
	2. Vectors in R
	What is a Vector?
	Creating a Vector
	Accessing Elements in a Vector
	Modifying Elements in a Vector

	3. Introduction to Other Data Structures in R
	Matrices
	Data Frames
	Lists
	Factors

	Key Takeaways
	Looking Forward

