Lecture 4: Introduction to Data Structures in

R

Dr. Logan Kelly

2024-09-04

Overview

e In this lecture, we’ll cover:

— An overview of data structures in R.

How to create and manipulate vectors in R.

— Practical examples of accessing data within vectors.

— Introduction to other data structures: matrices, data frames, lists, and factors.

1. Overview of Data Structures in R

R provides several data structures that are used to store, manage, and manipulate data
efficiently. Each structure has its specific use case and characteristics:

Vectors: One-dimensional arrays containing elements of the same type.

Matrices: Two-dimensional arrays where each element is of the same type.

Data Frames: Two-dimensional structures where each column can have different types
of data (similar to a spreadsheet).

Lists: Collections of elements that can hold different types of objects.

Factors: Specialized vectors for storing categorical data.

Choosing the appropriate data structure is crucial for effective analysis, as each structure is
suited for different types of operations and datasets.

2. Vectors in R
What is a Vector?

¢ A vector is the simplest and most common data structure in R. It is a one-dimensional
array that holds data of a single type, such as numeric, character, or logical.

Creating a Vector

You can create a vector using the c() function, which stands for “combine” or “concatenate.”
This function allows you to combine multiple elements into a single vector.

Example: Creating a Numeric Vector
Creating a numeric vector

sales_vector <- c(120, 150, 90, 100, 130, 170, 200)
sales_vector

(1] 120 150 90 100 130 170 200

o Explanation: This code creates a numeric vector containing sales data. The c¢() func-
tion combines the sales figures into a single vector called sales_vector.

Example: Creating a Character Vector
Creating a character vector

product_vector <- c("Product A", "Product B", "Product C", "Product D")
product_vector

[1] "Product A" "Product B" "Product C" "Product D"

o Explanation: This example creates a vector of product names using the c¢() function
to combine the names into a single character vector.

Accessing Elements in a Vector

You can access individual elements in a vector using indexing. R indexing starts at 1, meaning
the first element of the vector is accessed with vector_name[1].

Example: Accessing the First Element of a Vector

Accessing the first element of the sales vector
sales vector[1] # Returns 120

(1] 120

o« Explanation: This code retrieves the first element of the sales_vector, which is the
value 120.

Example: Accessing Multiple Elements

You can access multiple elements of a vector using a range of indices.

Accessing the first three elements of the sales vector
sales_vector[1:3] # Returns 120, 150, and 90

[1] 120 150 90

o Explanation: The range 1:3 retrieves the first three elements of the sales_vector,
returning the sales figures 120, 150, and 90.

Modifying Elements in a Vector

You can modify specific elements of a vector by assigning new values to a specific index.

Example: Modifying the Second Element of a Vector

Modifying the second element of the sales vector
sales_vector[2] <- 160
sales_vector

[1] 120 160 90 100 130 170 200

o Explanation: This example updates the second element of the sales_vector from 150
to 160.

3. Introduction to Other Data Structures in R

Matrices

¢ A matrix is a two-dimensional array where each element is of the same type. Matrices
are useful for mathematical operations across rows and columns.
o« Example: Creating a matrix of sales data for different products across different quarters.

Creating a numeric matrix

sales matrix <- matrix(c(120, 150, 90, 100, 130, 170, 200, 210, 180),
nrow = 3,
ncol = 3,
byrow = TRUE)

sales _matrix

[,11 [,2]1 [,3]
[1,] 120 150 90
[2,] 100 130 170
[3,1] 200 210 180

o Explanation: This matrix contains sales data for three products across three quarters.
Each row represents a different product, and each column represents a quarter.

Data Frames

¢ Data frames are two-dimensional structures that allow you to store data of different

types (e.g., numeric and character) in columns. This is one of the most common data
structures in R for business datasets.

Creating a data frame
sales_data <- data.frame(
Product = c("A", "B", "C"),
Sales Q1 = c(120, 150, 90),
Sales Q2 = c(170, 200, 140)
)

sales_data

Product Sales_Q1 Sales_Q2

1 A 120 170
2 B 150 200
3 C 90 140

o Explanation: This data frame contains sales data for three products (A, B, and C) across
two quarters (Q1 and Q2).

Lists

e A list can contain elements of different types, including vectors, matrices, and even other
lists. Lists are highly flexible and can be used to store complex data structures.

Creating a list

sales_list <- list(
Products = c("A", "B", "C"),
Sales = sales_vector,
Sales_Matrix = sales_matrix

)

sales_list

$Products
[1] IIAII "Bll IICII

$Sales
[1] 120 160 90 100 130 170 200

$Sales_Matrix

[,11 [,2]1 [,3]
[1,] 120 150 90
[2,] 100 130 170
[3,] 200 210 180

o Explanation: This list contains three elements: a vector of product names, a vector of
sales, and a matrix of sales data.

Factors

o Factors are used for storing categorical data, such as product categories or customer
satisfaction levels. They ensure proper handling of categorical variables in statistical
models.

Creating a factor
satisfaction <- factor(c("High", "Medium", "Low", "Medium", "High"))
satisfaction

[1] High Medium Low Medium High
Levels: High Low Medium

o Explanation: This factor represents customer satisfaction levels, with three categories:
“High”, “Medium”, and “Low”.

Key Takeaways

e Vectors are the simplest data structures in R, storing data of a single type. You can
easily access and modify elements using indexing.

e Matrices, data frames, lists, and factors allow you to work with more complex data
structures.

e You now know how to create and work with basic data structures in R.

Looking Forward

¢ In the next lecture, we’ll dive deeper into working with matrices in R, including creating,
accessing, and manipulating matrices for business analysis.

	Overview
	1. Overview of Data Structures in R
	2. Vectors in R
	What is a Vector?
	Creating a Vector
	Accessing Elements in a Vector
	Modifying Elements in a Vector

	3. Introduction to Other Data Structures in R
	Matrices
	Data Frames
	Lists
	Factors

	Key Takeaways
	Looking Forward

