
Lecture 10: Programming in R – Scripts,
Loops, and Conditional Statements

Dr. Logan Kelly

2024-09-04

Overview

• In this lecture, we’ll cover:

– How to write and run R scripts.
– Using loops to automate repetitive tasks.
– Applying conditional statements to control the flow of your programs.
– Writing custom functions for reusable code.

1. Writing and Running R Scripts

• What is an R script?

– An R script is a file containing a series of R commands that you can run together.
Scripts are useful for automating tasks and organizing your code.

• How to create a new script:

– In RStudio, navigate to File -> New File -> R Script. This opens a new script
file where you can write and save your code.

• Running a script:

– You can run individual lines of code in a script by selecting the line and pressing
Ctrl + Enter (Windows) or Cmd + Enter (Mac).

– To run the entire script, click on the Source button or use Ctrl + Shift + Enter.

• Example: A simple R script:

1

This is a simple script that calculates the square of a number
number <- 5
square <- number^2
print(square) # Output the result

[1] 25

• Saving the script:

– Save your script by going to File -> Save As and choosing a file name with the
.R extension (e.g., my_script.R).

2. Using Loops in R

• What is a loop?

– A loop allows you to repeat a block of code multiple times. Loops are useful for
automating repetitive tasks.

• For loop:

– The for loop iterates over a sequence of values, running the code inside the loop
for each value.

• Example: A simple for loop:

A for loop that prints numbers from 1 to 5
for (i in 1:5) {

print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

• While loop:

– The while loop repeats a block of code as long as a specified condition is TRUE.

• Example: A simple while loop:

2

A while loop that prints numbers from 1 to 5
i <- 1
while (i <= 5) {

print(i)
i <- i + 1 # Increment the value of i

}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

3. Using Conditional Statements in R

• What is a conditional statement?

– A conditional statement allows you to execute certain blocks of code based on
whether a condition is TRUE or FALSE.

• If-else statements:

– The if-else statement runs code when a condition is true and optionally runs dif-
ferent code when the condition is false.

• Example: Using an if-else statement:

x <- 10

if (x > 5) {
print("x is greater than 5")

} else {
print("x is less than or equal to 5")

}

[1] "x is greater than 5"

• Nested if-else statements:

– You can nest multiple if-else statements to check for multiple conditions.

• Example: Checking multiple conditions:

3

x <- 10

if (x > 15) {
print("x is greater than 15")

} else if (x > 5) {
print("x is greater than 5 but less than or equal to 15")

} else {
print("x is 5 or less")

}

[1] "x is greater than 5 but less than or equal to 15"

4. Writing Custom Functions

• Why write custom functions?

– Writing your own functions allows you to organize and reuse code. A function can
accept input, process the data, and return a result.

• Structure of a function:

– The general structure of a function in R is:

function_name <- function(argument1, argument2, ...) {
Code that performs some task
result <- argument1 + argument2 # Example operation
return(result) # Return the result

}

• Example: Writing a custom function:

A function to calculate the square of a number
square <- function(x) {

return(x^2) # Return the square of the input
}

• Calling the function:

square(4) # Call the function with input 4

[1] 16

4

• Using multiple arguments:

– Functions can take multiple arguments, and you can define default values for these
arguments.

• Example: A function with multiple arguments:

add_numbers <- function(a = 1, b = 2) {
return(a + b)

}

add_numbers(3, 5) # Call the function with specific values for a and b

[1] 8

Key Takeaways

• You can write and run R scripts to organize and automate tasks.
• Loops and conditional statements allow you to control the flow of your code and

automate repetitive tasks.
• Writing custom functions helps make your code more modular and reusable.

Looking Forward

• In the next lecture, we’ll dive into more advanced programming techniques in
R, including working with apply functions and exploring vectorized operations for
efficient coding.

5

	Overview
	1. Writing and Running R Scripts
	2. Using Loops in R
	3. Using Conditional Statements in R
	4. Writing Custom Functions
	Key Takeaways
	Looking Forward

