Lecture 10: Programming in R — Scripts,
Loops, and Conditional Statements

Dr. Logan Kelly
2024-09-04

Overview

e In this lecture, we’ll cover:

— How to write and run R scripts.

— Using loops to automate repetitive tasks.

— Applying conditional statements to control the flow of your programs.
— Writing custom functions for reusable code.

1. Writing and Running R Scripts

¢ What is an R script?

— An R script is a file containing a series of R commands that you can run together.
Scripts are useful for automating tasks and organizing your code.

¢ How to create a new script:

— In RStudio, navigate to File -> New File -> R Script. This opens a new script
file where you can write and save your code.

¢ Running a script:

— You can run individual lines of code in a script by selecting the line and pressing
Ctrl + Enter (Windows) or Cmd + Enter (Mac).
— To run the entire script, click on the Source button or use Ctrl + Shift + Enter.

o Example: A simple R script:

This is a simple script that calculates the square of a number
number <- 5

square <- number”2

print(square) # Output the result

[1] 25

e Saving the script:

— Save your script by going to File -> Save As and choosing a file name with the
.R extension (e.g., my_script.R).

2. Using Loops in R

¢ What is a loop?

— A loop allows you to repeat a block of code multiple times. Loops are useful for
automating repetitive tasks.

e For loop:

— The for loop iterates over a sequence of values, running the code inside the loop
for each value.

« Example: A simple for loop:

A for loop that prints numbers from 1 to 5
for (i in 1:5) {

print (i)
b

[1]
[1]
[1]
[1]
[1]

a > W N -

¢ While loop:
— The while loop repeats a block of code as long as a specified condition is TRUE.

o Example: A simple while loop:

A while loop that prints numbers from 1 to 5
i<-1
while (i <= 5) {

print (i)

i <-1i+ 1 # Increment the value of i

[1]
[1]
[1]
[1]
[1]

O W

3. Using Conditional Statements in R

¢ What is a conditional statement?

— A conditional statement allows you to execute certain blocks of code based on
whether a condition is TRUE or FALSE.

o If-else statements:

— The if-else statement runs code when a condition is true and optionally runs dif-
ferent code when the condition is false.

o Example: Using an if-else statement:
x <= 10

if (x > 5) {
print("x is greater than 5")
} else {
print("x is less than or equal to 5")

}

[1] "x is greater than 5"

e Nested if-else statements:

— You can nest multiple if-else statements to check for multiple conditions.

¢« Example: Checking multiple conditions:

x <- 10

if (x > 15) {

print("x is greater than 15")
} else if (x > 5) {

print("x is greater than 5 but less than or equal to 15")
} else {

print("x is 5 or less")

}

[1] "x is greater than 5 but less than or equal to 15"

4. Writing Custom Functions

¢ Why write custom functions?

— Writing your own functions allows you to organize and reuse code. A function can
accept input, process the data, and return a result.

¢ Structure of a function:

— The general structure of a function in R is:
function_name <- function(argumentl, argument2, ...) {
Code that performs some task

result <- argumentl + argument2 # Example operation
return(result) # Return the result

« Example: Writing a custom function:
A function to calculate the square of a number
square <- function(x) {

return(x~2) # Return the square of the input
}

o Calling the function:

square(4) # Call the function with input 4

[1] 16

¢ Using multiple arguments:

— Functions can take multiple arguments, and you can define default values for these
arguments.

e Example: A function with multiple arguments:
add_numbers <- function(a = 1, b = 2) {

return(a + b)

}

add_numbers(3, 5) # Call the function with specific values for a and b

(1] 8

Key Takeaways

¢ You can write and run R scripts to organize and automate tasks.

e Loops and conditional statements allow you to control the flow of your code and
automate repetitive tasks.

o Writing custom functions helps make your code more modular and reusable.

Looking Forward

e In the next lecture, we’ll dive into more advanced programming techniques in
R, including working with apply functions and exploring vectorized operations for
efficient coding.

	Overview
	1. Writing and Running R Scripts
	2. Using Loops in R
	3. Using Conditional Statements in R
	4. Writing Custom Functions
	Key Takeaways
	Looking Forward

