
Lecture 7: Working with Data Frames and
Lists in R

Dr. Logan Kelly

2024-09-04

Overview

• In this lecture, we’ll explore:

– How to create and work with data frames, one of R’s most important data struc-
tures.

– How to use lists to store complex data types.
– Practical examples of manipulating and accessing data within these structures.

1. Introduction to Data Frames

• What is a data frame?

– A data frame is a table-like structure where each column is a vector that holds
data of the same type (e.g., numeric, character), but different columns can store
different types of data.

– It is one of the most commonly used data structures in R for storing datasets.

• How to create a data frame:

– You can create a data frame using the data.frame() function.

• Example: Creating a data frame:

df <- data.frame(
name = c("Alice", "Bob", "Charlie"), # Character vector
age = c(25, 30, 35), # Numeric vector
salary = c(50000, 60000, 70000) # Numeric vector

)

1

• Accessing columns in a data frame:

– You can access a specific column using the $ operator.

• Example: Accessing the name column:

df$name

[1] "Alice" "Bob" "Charlie"

• Adding a new column to a data frame:

– You can add a new column to a data frame by creating a new variable and assigning
it to the data frame.

• Example: Adding a department column:

df$department <- c("HR", "Finance", "IT")

2. Introduction to Lists

• What is a list?

– A list is a versatile data structure in R that can store elements of different types
and sizes, such as vectors, data frames, or even other lists.

– Lists allow you to group related objects together, even if they are of different types.

• How to create a list:

– Use the list() function to create a list.

• Example: Creating a list:

my_list <- list(
name = "Alice",
age = 25,
salary = 50000,
skills = c("R", "Python", "SQL")

)

• Accessing elements in a list:

– You can access elements in a list using double square brackets [[]] or by using
the $ operator if the elements are named.

• Example: Accessing the name element:

2

my_list$name

[1] "Alice"

• Example: Accessing the skills vector:

my_list$skills

[1] "R" "Python" "SQL"

3. Manipulating Data Frames

• Filtering rows in a data frame:

– You can filter rows in a data frame by specifying conditions.

• Example: Filtering rows where age is greater than 25:

df[df$age > 25,]

name age salary department
2 Bob 30 60000 Finance
3 Charlie 35 70000 IT

• Selecting specific columns:

– You can select specific columns from a data frame by specifying their names in
square brackets.

• Example: Selecting the name and salary columns:

df[, c("name", "salary")]

name salary
1 Alice 50000
2 Bob 60000
3 Charlie 70000

3

4. Manipulating Lists

• Adding new elements to a list:

– You can add new elements to a list by assigning them to a new slot.

• Example: Adding a new department element:

my_list$department <- "HR"

• Modifying elements in a list:

– You can modify existing elements by assigning new values to them.

• Example: Changing the salary element:

my_list$salary <- 55000

5. Combining Data Frames and Lists

• Lists of data frames:

– You can store multiple data frames in a list, allowing you to work with complex,
multi-dimensional data.

• Example: Creating a list of data frames:

df1 <- data.frame(name = c("Alice", "Bob"), age = c(25, 30))
df2 <- data.frame(name = c("Charlie", "David"), age = c(35, 40))

data_list <- list(df1, df2)

• Accessing a data frame from the list:

data_list[[1]] # Access the first data frame in the list

name age
1 Alice 25
2 Bob 30

4

Key Takeaways

• Data frames are essential for organizing and analyzing tabular data in R, allowing you
to store data in columns of different types.

• Lists are powerful structures for storing complex and heterogeneous data, allowing you
to group different types of objects.

• You’ve learned how to manipulate and access both data frames and lists in R.

Looking Forward

• In the next lecture, we’ll explore packages and comments in R, focusing on how to
install, manage, and utilize packages for extended functionality, and how to properly
document your code using comments.

5

	Overview
	1. Introduction to Data Frames
	2. Introduction to Lists
	3. Manipulating Data Frames
	4. Manipulating Lists
	5. Combining Data Frames and Lists
	Key Takeaways
	Looking Forward

