
Lecture 5: Introduction to Functions in R
Dr. Logan Kelly

2024-09-04

Overview

• In this lecture, we’ll explore:

– What functions are and how to use them.
– How to write your own functions in R.
– The importance of comments in code to improve readability.

1. What are Functions in R?

• Functions in R are blocks of code designed to perform specific tasks.

• They can take input, process the data, and return a result.

• R includes many built-in functions that you can use right away, such as mean(), sum(),
and sqrt().

• Example: Using the mean() function:

numbers <- c(1, 2, 3, 4, 5) # Create a vector of numbers
mean(numbers) # Calculate the mean of the numbers

[1] 3

• Functions can take arguments (input values), perform an operation, and then return a
result.

1

2. Writing Your Own Functions in R

• Why write your own functions?

– Custom functions allow you to encapsulate a series of commands into a reusable
block of code.

– They make your code modular, efficient, and easier to maintain.

• Structure of a function in R:

– Functions in R follow this structure:

function_name <- function(argument1, argument2, ...) {
Code that performs some task
result <- argument1 + argument2 # Example of an operation
return(result) # Return the result

}

• Example: Creating a function to add two numbers:

add_numbers <- function(a, b) {
sum <- a + b # Add the two numbers
return(sum) # Return the result

}

• Using the function:

add_numbers(3, 5) # Call the function with two arguments

[1] 8

• Explanation:

– The function add_numbers() takes two inputs, a and b.
– Inside the function, the numbers are added together, and the result is returned.
– The function can now be reused whenever you need to add two numbers.

2

3. Adding Comments to Your Code

• Why are comments important?

– Comments are notes you add to your code to explain what it’s doing.
– They make your code easier to understand, especially when sharing with others or

revisiting it after some time.

• How to add comments in R:

– Use the # symbol to add a comment. Everything after # on the same line is ignored
by R.

• Example: Adding comments to a function:

This function adds two numbers together
add_numbers <- function(a, b) {

sum <- a + b # Add the two input numbers
return(sum) # Return the result

}

Call the function with arguments 3 and 5
add_numbers(3, 5)

[1] 8

• Best practices for commenting:

– Add comments to describe the purpose of your function.
– Use comments to explain complex logic or calculations.
– Don’t over-comment; focus on clarity.

4. Returning Values from Functions

• Functions in R often return a value after performing their operations.

• The return() statement is used to output the result from a function.

• If no return() is specified, R automatically returns the last expression evaluated.

• Example: A function that multiplies two numbers:

multiply_numbers <- function(x, y) {
product <- x * y # Multiply the inputs
return(product) # Return the result

}

3

• Using the function:

multiply_numbers(4, 6)

[1] 24

Key Takeaways

• You’ve learned how to use built-in functions like mean() and how to create your own
custom functions in R.

• Writing custom functions helps make your code modular and reusable.
• Comments in R are essential for making your code easier to understand and maintain.

Looking Forward

• In the next lecture, we’ll explore working with vectors and variables in more detail,
including how to manipulate and index data in R.

4

	Overview
	1. What are Functions in R?
	2. Writing Your Own Functions in R
	3. Adding Comments to Your Code
	4. Returning Values from Functions
	Key Takeaways
	Looking Forward

