Lecture 5: Introduction to Functions in R

Dr. Logan Kelly
2024-09-04

Overview

o In this lecture, we’ll explore:

— What functions are and how to use them.
— How to write your own functions in R.
— The importance of comments in code to improve readability.

1. What are Functions in R?

¢ Functions in R are blocks of code designed to perform specific tasks.
e They can take input, process the data, and return a result.

¢ R includes many built-in functions that you can use right away, such as mean(), sum(),
and sqrt Q.

« Example: Using the mean() function:

numbers <- c(1, 2, 3, 4, 5) # Create a vector of numbers
mean (numbers) # Calculate the mean of the numbers

[1] 3

o Functions can take arguments (input values), perform an operation, and then return a
result.

2. Writing Your Own Functions in R

¢ Why write your own functions?

— Custom functions allow you to encapsulate a series of commands into a reusable
block of code.
— They make your code modular, efficient, and easier to maintain.

¢ Structure of a function in R:
— Functions in R follow this structure:
function_name <- function(argumentl, argument2, ...) {
Code that performs some task

result <- argumentl + argument2 # Example of an operation
return(result) # Return the result

« Example: Creating a function to add two numbers:
add_numbers <- function(a, b) {
sum <- a + b # Add the two numbers
return(sum) # Return the result
¢ Using the function:

add_numbers(3, 5) # Call the function with two arguments

(1] 8

o Explanation:

— The function add_numbers () takes two inputs, a and b.
— Inside the function, the numbers are added together, and the result is returned.
— The function can now be reused whenever you need to add two numbers.

3. Adding Comments to Your Code

¢ Why are comments important?

— Comments are notes you add to your code to explain what it’s doing.
— They make your code easier to understand, especially when sharing with others or
revisiting it after some time.

¢ How to add comments in R:

— Use the # symbol to add a comment. Everything after # on the same line is ignored
by R.

o Example: Adding comments to a function:

This function adds two numbers together
add_numbers <- function(a, b) {
sum <- a + b # Add the two input numbers
return(sum) # Return the result

Call the function with arguments 3 and 5
add_numbers (3, 5)
(1] 8

o Best practices for commenting;:

— Add comments to describe the purpose of your function.
— Use comments to explain complex logic or calculations.
— Don’t over-comment; focus on clarity.

4. Returning Values from Functions

e Functions in R often return a value after performing their operations.

The return() statement is used to output the result from a function.
e If no return() is specified, R automatically returns the last expression evaluated.
o Example: A function that multiplies two numbers:

multiply_numbers <- function(x, y) {

product <- x * y # Multiply the inputs
return(product) # Return the result

¢ Using the function:

multiply_numbers(4, 6)
[1] 24

Key Takeaways

e You've learned how to use built-in functions like mean() and how to create your own
custom functions in R.

e Writing custom functions helps make your code modular and reusable.
e Comments in R are essential for making your code easier to understand and maintain.

Looking Forward

¢ In the next lecture, we’ll explore working with vectors and variables in more detail,
including how to manipulate and index data in R.

	Overview
	1. What are Functions in R?
	2. Writing Your Own Functions in R
	3. Adding Comments to Your Code
	4. Returning Values from Functions
	Key Takeaways
	Looking Forward

