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Overview

o In this lecture, we’ll explore:

— What functions are and how to use them.
— How to write your own functions in R.
— The importance of comments in code to improve readability.

1. What are Functions in R?

¢ Functions in R are blocks of code designed to perform specific tasks.
e They can take input, process the data, and return a result.

¢ R includes many built-in functions that you can use right away, such as mean(), sum(),
and sqrt Q.

« Example: Using the mean() function:

numbers <- c(1, 2, 3, 4, 5) # Create a vector of numbers
mean (numbers) # Calculate the mean of the numbers

[1] 3

o Functions can take arguments (input values), perform an operation, and then return a
result.



2. Writing Your Own Functions in R

¢ Why write your own functions?

— Custom functions allow you to encapsulate a series of commands into a reusable
block of code.
— They make your code modular, efficient, and easier to maintain.

¢ Structure of a function in R:
— Functions in R follow this structure:
function_name <- function(argumentl, argument2, ...) {
# Code that performs some task

result <- argumentl + argument2 # Example of an operation
return(result) # Return the result

« Example: Creating a function to add two numbers:
add_numbers <- function(a, b) {
sum <- a + b # Add the two numbers
return(sum) # Return the result
¢ Using the function:

add_numbers(3, 5) # Call the function with two arguments

(1] 8

o Explanation:

— The function add_numbers () takes two inputs, a and b.
— Inside the function, the numbers are added together, and the result is returned.
— The function can now be reused whenever you need to add two numbers.



3. Adding Comments to Your Code

¢ Why are comments important?

— Comments are notes you add to your code to explain what it’s doing.
— They make your code easier to understand, especially when sharing with others or
revisiting it after some time.

¢ How to add comments in R:

— Use the # symbol to add a comment. Everything after # on the same line is ignored
by R.

o Example: Adding comments to a function:

# This function adds two numbers together
add_numbers <- function(a, b) {
sum <- a + b # Add the two input numbers
return(sum) # Return the result

# Call the function with arguments 3 and 5
add_numbers (3, 5)
(1] 8

o Best practices for commenting;:

— Add comments to describe the purpose of your function.
— Use comments to explain complex logic or calculations.
— Don’t over-comment; focus on clarity.

4. Returning Values from Functions

e Functions in R often return a value after performing their operations.

The return() statement is used to output the result from a function.
e If no return() is specified, R automatically returns the last expression evaluated.
o Example: A function that multiplies two numbers:

multiply_numbers <- function(x, y) {

product <- x * y # Multiply the inputs
return(product) # Return the result



¢ Using the function:

multiply_numbers(4, 6)
[1] 24

Key Takeaways

e You've learned how to use built-in functions like mean() and how to create your own
custom functions in R.

e Writing custom functions helps make your code modular and reusable.
e Comments in R are essential for making your code easier to understand and maintain.

Looking Forward

¢ In the next lecture, we’ll explore working with vectors and variables in more detail,
including how to manipulate and index data in R.
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